A selected group of staff in New South Welles South \& West Region (Consumer and Country Division) have recently conducted an intensive examination and testing process of cables feeding out of eight rural exchanges. The initial aim was to gather information about the real level of transmission related faults, however. the findings create great concern over the degree of DC faults.

With over $\mathbf{3 5 0}$ working services, and as many spare cable pairs tested wo date, it can be said that:

- Any customer beyond the 6.5 dB limit, and thus needing either loading or conditioning, is seriously out of uansmiation specification. Not a single service has been found which is even remotely close to correct.
* Any service operating on loaded pairs, and terminating in a T200 handset has serious deficiencies in the sidetone level.
* Any service connected via a rural distribution cable method has a 70% chance of having a DC fruit (earth. fortign battery or, loss between) sufficient enough to significantly degrade the level of service. An additional 20% have DC faults of a less serious degree. That is, 90% of services exhibit either a foreign battery, earth, or loss between fault.
* Almost 100\% of rumal Elevated Joints (ED) exhibit a multitude of DC faults caused by poor work standards.
* Unless a new customer is within a few hundred metes from the exchange, it is impossible to find a totally fault free spare pair to use. That is, the fault tate on spare pairs is even higher than on working services.
* Many lengths of cable are being replaced without justification.
* Faults are not being repaired at all - the service restoration method is to transpose around the problem. This applies to faults in joints as well as cable lengths.
* There is a cero level of field staff understanding of transmission testing techniques and operating principles.
* Modern testing equipment, whilst being adequately supplied, is only being used by a minority of staff. And even then, in limited variety and circumstance.
* Lightning strikes are being encouraged by our own actions. Our focus is on quickly getting to the fault rather than preventing the fault. As a result we are ensuring that we get hit by lightning far more often.

BACKGROUND

Within the ambit of the Transmission Quality Improvement Project (TQIP), it was decided to survey a number of rural services. Initial discussions with others who have tried to do similar, revealed tat to simply try and measure each service was doomed to failure. Past experience showed that lines normally had multiple DC fault which needed to be repaired prior to any tonsmission testing.

A team of six staff (3 technicians and 3 lines) were selected and then trained. The training consisted of a complete overview of network transmission, dB theory and measurement, hybrid theory, lest instruments, faith finding rechniquos, and coble parameters. Throughout the training period, use was made of "expert" to fully explain each subject. Initially, a classroom environment was used, but then reverting to field training, and practical application.

As a consequence, the staff don't only know about Transmission - they understand it !
A basic work process was developed for the group to follow. This has needed significant modification and will requite more, as the project develops.

The process used is to test all pairs (including spares) from the exchange. Using a Lines Test Set. CZ3000 and Echoflex, DC faults are identified and logged. Then each joint is opened, inspected. corrected, and tested towards the next one. On the rare occurrence that a loading coil is encountered, the circuit is tested with a Simline and HDW T08/3 PET. When lengths which cant be repaired are found (tested with Dynatel 573 and 18B), working services are transposed onto the best pairs, or in extreme cases, a length is run over the ground. When all faults are cleared, long fines are fully tested with the Simlinc. Sidetone is checked initially by the rather simple "blow/elick" method, and if in doubt. an A215 is used to generate 100 ABA CTS into the transmitter, and measured with a Sound level meter at the receiver.

NHIAL HiNDNGS

As a Ruscian Geperal onot anid, "the original fail safe master plan omly turvives until the enemy is first met". And so it was with the CAN transmission group.

The quantity and severity of DC faule were way beyond expectations. Furthermore, moat cixcuibs had multiple fanlts
 perfecty correct and fandt tree!

Another complication is the faults which have been proven into cable leogths. Given that the sim is to fix the faults. rather then justreplece cablec, this has masat a lot of digging and repairing. Obviously nop all cables ean be repairech and thus must be replaced. When these are identified, a cable replacement report is submitued.

The greatea loss of time can be atributed to the atitude of "don't fix, just transpose around the problena". The problem it so bud thaz our process has had to be altwred so that stafe I is to now atringthen the cable pairs and clem DC faults. It is quite common to find servics wortheg over split pairs more often than not because of a failt in a jotat. Thase splitr are frequently on $2 \times \mathrm{A}$ logs or 3 laga - any two wires seem to do: after all, they are only bits of copper! Bad huck about the introduced cross-tilk

Some fete and figures; (witi locations identified as $1,2,3$ cte rachor than by name)

LOCATION	1	2	3	4	5	6	7
SERYICES	41	61	44	35	17	29	92
FAULTY (DC)	5	33	43	35	17	17	73
LONGLINES	16	11	nil	18	17	4	40
IRANS FAULT	16	11	-	18	17	4	40
SPARE PARS	29	49	21	24	11	1	58
FAULTY	29	37	18	20	11	8	43
IONNS (EJ)							
RENADE \%	90	90	95	100	60	70	100
REPLACED	3	4	5	7	nil	5	14
DIG \&FX	5	3	6	7	nil	4	19
SIDETONE							
TESTED	nil	nil	nil	15	nil	29	37
WRONG	-	-	-	15		14	31

NOTES

1. Location 1 had only 5 services with DC faults over the "Standard SLlQ" levels of 5 volts ballery, and 1 Megohm insulation resistance. An additional 28 services had fauls of a lower severity.

2 Location 5 was a single route feeding a remote area with all services loaded. This foute was used as part of the training program, and thus not fully ested.
3. Location 6: According to plans, the 4 long tines are not outside timits - however. beciause 0.90 cable has been replaced with 0.64 mm . they now have approx I to 2 dB excesc loss. These curcomers have had their sidetone cortecmed and there is no need to worry about the loss. given that the lines are mainained with absolurely no DC faults.
4. Location 7 had a cable roule which fed through extemely rough mountain country. This cable was in very poor condition with many fauls in cable lenguts. It was desided because of the high cost of replacing the cable, it was viable to dig and repair far more ofien ingen would normally be the case. Even then. a section muxt be replaced due to the ingress of water.
 long lines, plat those within a few hundred metes from the SCAX. Therefore percentage figures tee not valid.

6 The figure for earlier wart great are wetimutes only. agr the number of remade joints were mot counted become it what not expected that the quality would be so great
7. All joints which warp not fully remade still required repair work - there has been no single joint found which did not require correction of faults.

Tense on epee pairs are only valid within a shot distance from the SCAX. Most tones go to open circuit within one (1) Kilometre, and thus, faults detected are within that length. Beyond thess, spoolfic figures have not been reatined for faulty spares within tate individual cobia length.

SFECIFIC and GENERIC EXCMPLES

Types of problems found in rural cables and joints include:
No bag over the unsbentied conductors. - this create insulation breakdown. pariederiy on the mates. Joints have been found where some wise were completely devoid of insulation.

Fixers sheathing removed. - allow t the above problem to dour more mpidly, and to a greater degree. The worst example found had 3 metres (that's right, you didn't read it wrong) of stripped cable inside an EJ.

Wrong size jointing poets. - The standard size post can accommodate up to 30 pairs of 0.50 am cable, provided that there are orly the two cables plus leading. Standard posts with up to 50 pairs or with three or more stander cables are quite common. The effect is to "jam or squeeze" the conductors so shat they are in direct contact with the cover. Over time, the results are para earthing out on the post insulation "sticking" to the cover etc.

Twist and slow e joint on crosse cable. - insulation on grease cable is not designed to tale the sivas of twisting (It brealot the insulation further down the wire). Another similar mater is where the whipping from within the cable has been used to tie off groups rather than using collets. The effect is the same as for wien joint = the insulation in filed cable cannot take the stress and is quickly damaged.

Faulty connectors - this appears to be a contentious problem. Field staff surer that a certain percentage of connectors are crook and thar thy, the users, capt do anything about it Our tests indicate dial dusty, this percentage is very, very low, and secondly, if the joint is completed in a slower and more methodical way, any fanny connectors are easily detected. A final visual check of the joint will also highlight any faulty units which have slipped trough. Worse case that has been found so far was a complete cable route where every joint had eonnecrort which hodn't been fully crimped. Clearly someone using either a faulty tool or crimping teclunique.

Preticularty alarming is the number of joints fount with clear signs of resent activity (eg; one of two pair with new connectors atc) but with numerous other major fault conditions. It is beyond comprehension to understand why someone would open a joint and ace that all pair were suffering severe insulation breakdown, but then only fix a single pair.

Elevated joints which are prone to damage and/or fails create another conundrum. Examples ate where cattle
 exactly where it was? There are many ways to permanently solve the manner.

A further example is where joints are located in bad positions such as swaps. This raises the question of the original design, and then the original installation, and then the ongoing maintenance. The best example of the is a joint so deep in a swamp that a fair of fisherman's waders was needed to get to it. The accad joint was permanently underwater except during drought conditions ! Unlike most lamers across the Nation, those in this ate pray for *ought!.

Transposing pairs has created a nightmare of problems. In order to either connect a hew service or to locate a fault almost every joint on the route nerd to be opened this generates a number of "man made" fouls for every one cleaved. If the cable is kept straight, then new services can be connected by opening only a single joint. Likewise, a fault an be located to the nearest joint and again, only is single joint disturbed. The findings of the transmission group indicate that the more transpositions which have occurred, then the more fall prone is the cable route.

Tee sections，or malliples，or bridge points（whichever term you prefer）are a furcher worry．Whilst very few have been found，those that hrve been，have all existed as a cesult of confision within beavily trantposed joints．There it no need for 3 wise＂O＂side coagectors．Roelthampton district have not provistoned then since 1980.

Arother problem with traspositions is that staff lose the ability（or motivation）to tepair faults．It is far easier to simply swnp a few paiss．However，if the cable has suffered sheath damage and the fault being chased is not located， the damage spreads fike a cancer throughout the length until such time as all pair are affected．

In essence，the practice of mansposing pain is costing ws a veritable fortune as it creates onore fauls；causes a huge man－hour wastage as staff try nod sort through the mewr；and，generates the need for many kilometres of cable to be teplaced neediessly．At present it is extrenely rare to find a cable which remains straight through more than two joints ！

TRANSPOSING PARS SHOULD BE A CAPITAL OFTENCE：

Marker posts are almost non existent on older routes，As they are lost or danaged，they are not replaced．This has three efieets：it censes more lost titue as staff try and locate the cable；it allows local farmers to damage the cable with various mechinery；and it encourages the transpose mentality．When local staff have been atked why they don＇t fix faylts within lepgets，bey reply that they don＇t have time to find the cable．When asked why they haven＇t replaced marker pouts，they answer that they know where the cables ame！Who is kidding who？

Design defciencies bave also ensouraged poor maintenance pretictes Apart from the＇swamp＇example above，we have found EFs（with loading coils）positioned 800 merres from the nearest track，and in very heavy scrub on the side of a mountain．Having walled（climbsd 7）up to this particular EJ thre times in the one morning to do testing－and carried a number of test instruments，I can guarantee that the inner reserves of motivation are needed to make that last journey．This particular Ejs condition clearly indicated that local staff hadn＇t been able to dig deep enough into their motivetion for many years．

SOME EURTEER INTERESTING EXAMPLES OF WHAT CAN BE FOUND；

A cabte feeding from the SCAX via a conduit to the local village－when tested it showed as having multiple fandts，on seven pairs，＂in length＂．Digging revealed that the conduit was not damaged．When the cable was disconnected and nemoved it was fowed that seven sueres of sheath was badly ripped－conld only have been caused during inataliation， and nover fixed，jugt trantpose around the faults．Why wasa＇t this cable tested during instaliation？Why hadn＇t the locals detected the cause and repaired the damege？

A cable was found with no good pairs left－all spares were fanlty．Eight working customers on a 20 pair cable，but only 7 renconable pairs（none were fault free）．Solution is simple：just transpose onto a 200 metre lengh of jumper wire across the grouad．Thote who advocate transpositions have a jot to answer for ！！！

When tasting from an EJ，many pairs were faulty within the first matre．The problem was that the joint had been cut beck to many times that it was too short to reach．Someone had then re－routed the cable 30 that it was only an inch or so under the ground．Result was that when anybody was working on the joint ant happeped to stick a screwdriver or knife into the ground，it went into the cable．The pressure to produce more and more in less and less time，and with less and less staff is producing some very funny results ！！！

Multiple gauge changea．For some years we have not used 0.90 mm cable．Faulty sections are replaced with 0.64 or 0.40 mm ．Thls is a cheap initial fix but croates transmistion problems that are expensive to fix once the customer complains．The arimde appears to be to replace the shontest possible length and to do it many times．How can the Breaktrough Group halve the fault rate in 18 months when we intentionally install faults？

The worst case found so far is where 7 gauge changes occurred on a group of customers within the 6.5 dB fimit （thepretical）－the actual loss was some 4 dB too high．Another example was where there is something which darnages（or has damaged）the same cable on a number of occasions－and each time we have simply put in a new setion and NOT USED THE SAME START AND FINISH POWNTS；that is，the cable was initially 0.90 PE． changed to 0.64 PE （lst teplacement），changed to 0.64 PEMB （2nd replacement），changed to 0.64 PEMBHI（3rd replacement）and the latest change was 0.64 Grease tilled．Remmants．ranging in length from 20 metres to 880 metres of each of these cable types were sull there．accompanied by 6 EJs and all within 900 metres．

A customer，whose sidetone measured +7 dB STMR（instead of $\cdot 13 \mathrm{~dB}$ ），mentioned that Telecom people had changed the handset three times（within the last 12 months）following her complaints of being unable to hear properly．The service was $\$ 00$ merres from the last coil and he solution was to fit a matching unit（ $525 / 93$ ）aeross the

